<ruby id="elmly"><ruby id="elmly"><table id="elmly"></table></ruby></ruby>

<video id="elmly"></video>
      1. <source id="elmly"><mark id="elmly"></mark></source>

          <source id="elmly"><track id="elmly"></track></source>
        1. <source id="elmly"><mark id="elmly"><object id="elmly"></object></mark></source>
        2. <table id="elmly"></table>
          在線咨詢:400-001-1352
          什么是虛擬電廠?
          發布時間:2022-09-23

          什么是虛擬電廠?

          虛擬電廠的提出是為了整合各種分布式能源,包括分布式電源、可控負荷和儲能裝置等。其基本概念是通過分布式電力管理系統將電網中分布式電源、可控負荷和儲能裝置聚合成一個虛擬的可控集合體,參與電網的運行和調度,協調智能電網與分布式電源間的矛盾,充分挖掘分布式能源為電網和用戶所帶來的價值和效益。虛擬電廠主要由發電系統、儲能設備、通信系統構成,如圖所示:

           image.png

          1)發電系統主要包括家庭型(domesticdistributedgeneration,DDG)和公用型(publicdistributedgeneration,PDG)這2類分布式電源。DDG的主要功能是滿足用戶自身負荷,如果電能盈余,則將多余的電能輸送給電網;如果電能不足,則由電網向用戶提供電能。典型的DDG系統主要是小型的分布式電源,為個人住宅、商業或工業分部等服務。PDG主要是將自身所生產的電能輸送到電網,其運營目的就是出售所生產的電能。典型的PDG系統主要包含風電、光伏等新能源發電裝置。

           

          2)能量存儲系統可以補償可再生能源發電出力波動性和不可控性,適應電力需求的變化,改善可再生能源波動所導致的電網薄弱性,增強系統接納可再生能源發電的能力和提高能源利用效率。

          3)通信系統是虛擬電廠進行能量管理、數據采集與監控,以及與電力系統調度中心通信的重要環節。通過與電網或者與其他虛擬電廠進行信息交互,虛擬電廠的管理更加可視化,便于電網對虛擬電廠進行監控管理。

           

          虛擬電廠的關鍵技術是什么?

          根據虛擬電廠信息流傳輸控制結構的不同,虛擬電廠的控制方式可以分為:集中控制方式、分散控制方式、完全分散控制方式。

          ①集中控制方式下的虛擬電廠可以完全掌握其所轄范圍內分布式單元的所有信息,并對所有發電或用電單元進行完全控制。

          ②分散控制方式下的虛擬電廠被分為多個層次。處于下層的虛擬電廠的控制協調中心控制轄區內的發電或用電單元,再由該級虛擬電廠的控制協調中心將信息反饋給更高一級虛擬電廠的控制協調中心,從而構成一個整體的層次結構。 

          ③在完全分散控制方式下,虛擬電廠控制協調中心由數據交換與處理中心代替,只提供市場價格、天氣預報等信息。而虛擬電廠也被劃分為相互獨立的自治的智能子單元。這些子單元不受數據交換與處理中心控制,只接受來自數據交換與處理中心的信息,根據接受到的信息對自身運行狀態進行優化。

          虛擬電廠的優化調度問題可以分為2種:

          ①內部調度,虛擬電廠對自身內部多個電源的容量配置或出力進行優化調度;

          ②外部調度,由電網將虛擬電廠當成一個整體進行優化調度。

           

          虛擬電廠與微網的區別在哪?

          虛擬電廠和微網是目前實現分布式電源并網最具創造力和吸引力的兩種形式。

          image.png

          對于微網的定義,國內一般認為:微網是指由分布式電源、儲能裝置、能量轉換裝置、相關負荷和監控、保護裝置匯集而成的小型發配電系統,是一個能夠實現自我控制、保護和管理的自治系統,既可以與外部電網并網運行,也可以孤立運行。它能夠很好地協調大電網與分布式電源的技術矛盾,并具備一定的能量管理功能,但微網以分布式電源與用戶就地應用為主要控制目標,且受到地理區域的限制,對多區域、大規模分布式電源的有效利用及在電力市場中的規?;б婢哂幸欢ǖ木窒扌?。

          虛擬電廠并未改變每個分布式電源并網的方式,而是通過先進的控制、計量、通信等技術聚合分布式電源、儲能系統、可控負荷、電動汽車等不同類型的分布式能源并通過更高層面的軟件構架實現多個分布式能源的協調優化運行。它能夠聚合微網所轄范圍之外的分布式電源,更有利于資源的合理優化配置及利用。


          虛擬電廠未來是什么樣子的?

          美國的一份報告指出,儲能使得虛擬電廠在未來幾年將“侵入能源市場”。報告認為,一個功能全面的能量云的前提是虛擬電廠,虛擬電廠的增長將使能源云成為一種交易平臺,參與者能夠在其中相互購買和出售來自多個電源點的能源,基于虛擬電廠的能源云使得能源交易雙向互動,而不是傳統意義上的能源單向流動。
          隨著國家對清潔能源和新興技術的發展的大力推動,虛擬電廠將成為智能電網和全球能源互聯網建設中重要的能源聚合形式,具有廣闊的發展空間。\


          1)分布式電源的互補性減少出力的不確定性。

          由于可再生能源出力存在較大的隨機性、波動性、間歇性,分布式電源的動態組合問題亟待解決。隨著全球能源互聯網建設的推進,三部委針對可再生能源聯合發布了“一帶一路”和“一極一道”發展戰略,“一帶一路”沿線各國都具有豐富的風能和太陽能資源,“一極一道”更是推進了大型可再生能源基地電力送出以及各大洲之間電力交換。能源互聯網戰略推進跨境電力與輸電通道建設,積極開展區域電網升級改造合作,充分發揮不同區域內分布式電源的時差互補和季節互補特性,提高可再生能源的利用率和虛擬電廠的效益。

           

          2)多個分布式單元靈活地進行動態組合組成虛擬電廠。

          虛擬電廠與微電網的最大區別在于構成虛擬電廠的多個分布式發電單元不一定在同一個地理區域內,其聚合范圍以及與市場的交互取決于通信能力和可靠性。多個分布式發電單元按照一定的規則或目標進行聚合,以一個整體參與電力市場或輔助服務市場,最后將利益分配給每個分布式發電單元。虛擬電廠作為中介,根據動態組合算法或動態博弈理論等規則對多個分布式發電單元靈活地進行動態組合。動態組合的實時性和靈活性可以避免實時不平衡所帶來的成本問題以及由于電廠停機、負荷和可再生能源出力預測失誤時所導致的組合偏差問題。

           

          3)大數據對可再生能源進行預測,提高虛擬電廠數據處理速度。

          大數據是指無法在可承受的時間內用傳統的IT技術、軟硬件工具和數學分析方法進行感知、獲取、管理、處理和分析的數據集合。大數據技術可進行負荷預測和可再生能源出力預測,包括風能和太陽能。風能預測非常必要,因為數據顯示在用電高峰期,風電場的實際產能變化幅度很大。準確預測太陽能和風能需要分析大量數據,包括風速、云層等氣象數據。同時,利用大數據技術處理虛擬電廠內的各種信息,能有效提高數據交換與處理中心的處理速度,為虛擬電廠的數據交換與處理中心提供各子系統實時、精確的數據信息流。

           

          4)虛擬電廠參與多種市場進行優化調度和競價。

          虛擬電廠通過對多個分布式單元進行聚合成為一個整體參與電力市場運營,既可以發揮傳統電廠出力穩定和批量售電的特點,又由于聚合了多種發電單元而具有較好的互補性。虛擬電廠所參與的電力市場包括日前市場、實時市場、輔助服務市場等,由此可建立日前市場、雙邊合同、平衡市場及混合市場等多種市場模型??紤]虛擬電廠中可再生能源出力、負荷和實時電價等不確定因素,在不同市場環境下建立調度和競價模型,使虛擬電廠具有更廣泛的適用性。

           

          5)基于博弈論建立科學的合作機制,確保虛擬電廠的穩定性。

          博弈論主要研究存在利益關系或沖突的多個決策主體,根據自身能力和了解的信息,如何各自進行有利于自己或決策者群體的決策的理論?;诓┺恼?,認為虛擬電廠內的所有發電和用電單元和虛擬電廠與外部所有運營商均為合作博弈。根據合作博弈理論制訂科學的合作機制,包括虛擬電廠內部聚合的多個發電或用電單元之間的合作機制和虛擬電廠與集成運營商、配電網或輸電網以及電力市場運營者之間的合作機制,保證所有參與者的合理收益,使參與者保持長期的參與積極性,確保虛擬電廠的穩定性。

           


          黄色欧美成人一区_国产东京热无码AV_免费看一级无码毛片_中文字幕不卡在线视频无码
          <ruby id="elmly"><ruby id="elmly"><table id="elmly"></table></ruby></ruby>

          <video id="elmly"></video>
            1. <source id="elmly"><mark id="elmly"></mark></source>

                <source id="elmly"><track id="elmly"></track></source>
              1. <source id="elmly"><mark id="elmly"><object id="elmly"></object></mark></source>
              2. <table id="elmly"></table>